THE CRYSTAL AND MOLECULAR STRUCTURE OF THE BIS(THIO-CYANATO)-BIS(4-METHYLPYRIDINE)COPPER(II) COMPLEX AT $180^{\circ} \mathrm{K}$

Mária Kabešová, Zlatica Kožíšková and Michal Dunaj-Jurčo
Department of Inorganic Chemistry, Slovak Technical University, 81237 Bratislava

Received June 30, 1989
Accepted September 25, 1989

Dedicated to $\operatorname{Dr} S$. Ďurovič on the occasion of his 60 th birthday.

Abstract

At $180^{\circ} \mathrm{K},\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ crystallizes in the monoclinic system, space group $P 2_{1}, Z=6$, with the elementary cell parameters $a=0.963(1), b=2.653(2), c=0.984(2) \mathrm{nm}, \beta=106 \cdot 40-$ $(0 \cdot 07)^{\circ}$. The central atom possesses the tetragonal bipyramidal coordination; the heterocyclic ligands are bonded in the equatorial plane of the coordination polyhedron in the trans positions, the thiocyanate ligands are bridge ones and are coordinated in both the equatorial and axial positions of the coordination polyhedron. The crystal structure involves three symmetrically independent coordination polyhedra differing in the degree of axial distortion. The thermal stability of the thiocyanate ligands in the complex is related with the steric arrangement of the thiocyanatocopper(II) chains.

During the study of the thermal properties of $\left[\mathrm{CuL}_{2}(\mathrm{NCS})_{2}\right]$ complexes where L is pyridine or the various isomeric forms of methylpyridine or dimethylpyridine ${ }^{1,2}$, methyl substituents at the pyridine ligand were found to affect the starting temperature of redox transformations of the thiocyanate ligand. For the $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}\right.$. . $(\mathrm{NCS})_{2}$] complex the temperature at which the thiocyanate ligands start to decompose is appreciably lower than for the $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$ complex ${ }^{3}$. This is rather surprising because owing to the higher basicity and a positive inductive effect, 4-methylpyridine in thiocyanatocopper(II) complexes should increase their redox stability as compared to pyridine. The elucidation of the crystal structure of [Cu -(4-Mepy) $)_{2}(\mathrm{NCS})_{2}$], which is the objective of the present work, should contribute to gaining insight into this effect.

EXPERIMENTAL

The substance studied was obtained by reacting 10 ml of an aqueous solution of CuSO_{4} (2 mol . $.1^{-1}$) containing ammonia with an ethanolic solution of 4-methylpyridine (1:1) and an aqueous solution of $\mathrm{NH}_{4} \mathrm{NCS}\left(2 \mathrm{moll}{ }^{-1}\right)$, added in amounts such that the $c(\mathrm{Cu}): c\left(\mathrm{NH}_{3}\right): c(4-\mathrm{Mepy}): c$. (NCS) ratio was $2: 8: 5: 4$. The green needle-shaped crystals were filtered out and rinsed with 1% aqueous and 1% ethanolic solutions of 4 -methylpyridine. For $\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}(\mathrm{NCS})_{2}(365.96)$
calculated: $45 \cdot 96 \% \mathrm{C}, 3 \cdot 86 \% \mathrm{H}, 17 \cdot 37 \% \mathrm{Cu}, 15 \cdot 31 \% \mathrm{~N}$; found: $45 \cdot 94 \% \mathrm{C}, 3 \cdot 82 \% \mathrm{H}, 17 \cdot 37 \% \mathrm{Cu}$, $15 \cdot 30 \% \mathrm{~N}$.

Crude crystallographic data were obtained by using the oscillation Weissenberg photographic method. The specific weight of the crystals was determined by means of the flotation method in a bromoform-methanol mixture. The experimental data were obtained on a SYNTEX P2 1_{1} automatic diffractometer at 180 K . The lattice parameters were derived by refinement of the position angles of ten selected diffractions on a Polaroid photograph from the diffractometer. Conditions of measurement were as follows: CuK_{α} radiation (1.54178), graphite monochromator, $\Theta-2 \Theta$ scanning technique at rates of $4.83-29.3^{\circ} \mathrm{min}^{-1}$, crystal dimensions $0.1 \times 0.1 \times$ 0.5 mm , temperature $1 \ell 0 \mathrm{~K}$, checking by intensity measurements of two diffractions after each 98 diffractions, conditions for observed diffractions: $I=3 \sigma_{(}(I)$, number of observed diffractions 2 374. Intensity fluctuations of the standard diffractions did not exceed 1%. The experimental diffraction intensities were corrected for the Lorertz polarization factor and absorption by measuring the Ψ scan of selected diffractions.

The crystal structure was elucidated by using the heavy atom method. The positions of the copper atoms were determined by Patterson syr.thesis and those of the remaining nonhydrogen atoms, by Fourier synthesis. The positions of the hydrogen atoms were calculated assuming the $s p^{2}$ and $s p^{3}$ hybridization. The least squares method was employed for the structure refinement. In the isotropic refinement, all parameters were refined with a full matrix, whereas in the anisotropic refinement, the parameters were divided into nine groups and refined with a block-diagonal matrix. The final values of $R=0.063$ and weighted $R_{w}=0.063\left(w=1 / \sigma^{2}(F)\right)$ were achieved. The scattering curves of the neutral atoms were taken from the International Tables ${ }^{4}$. The calculations were performed on a NOVA 1200 computer using the XTL programs ${ }^{5}$ and on a MINSK-$-\mathrm{M}-4030-1$ computer using the programs SHELX (ref. ${ }^{6}$) and PARST (ref. ${ }^{7}$).

RESULTS AND DISCUSSION

The $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ complex crystallizes in the monoclinic system, space group $P 2_{1}, Z=6$, with elementary cell parameters as given in Table I. The fractional coordinates of the nonhydrogen atoms are given in Table II, the bond lengths (internuclear distances) and angles, in Tables III and IV, respectively; some interatomic distances for this substance and for $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$ at room temperature are also included. The values of the observed and calculated structure factors, anisotropic temperature factors, fractional coordinates of the hydrogen atoms and their bond distances and equations for the planes formed by the nitrogen atoms in the equatorial planes of the coordination polyhedra and the pyridine ring atoms as well as the angles formed by them are available from the authors on request.

In the crystal structure of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ the central atom possesses the tetragonally bipyramidal coordination and $\mathrm{CuN}_{4} \mathrm{~S}_{2}$ chromophors. Similarly as in $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]\left(\right.$ ref. $\left.^{8}\right)$, the thiocyanate and heterocyclic ligands are coordinated by the nitrogen atoms in the equatorial plane of the coordination polyhedron of $\mathrm{Cu}(\mathrm{II})$. In the axial positions the central atom is coordinated by sulphur atoms from the bridge thiocyanate ligands. In the crystal structure of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$, in contrast to $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$, three symmetrically independent coordination polyhedra, with different degrees of axial distortion, occur about the copper atoms (Fig. 1).

Table I

Crystallographic data of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]^{a}$

Crystallographic system	monoclinic
Space group	$P 2_{1}, Z=6$
Elementary cell dimensions	
$\quad a, \mathrm{~nm}$	$0.963(1)$
$b, \mathrm{~nm}$	$2 \cdot 653(2)$
$c, \mathrm{~nm}$	$0.984(2)$
$\quad \beta, \mathrm{deg}^{3}$	$106 \cdot 40(7)$
$V, \mathrm{~nm}^{3}$	$2413(3)$
Density at room temperature, $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$	$d_{\mathrm{o}}=1 \cdot 48(1), d_{\mathrm{c}}=1.47$
$\mu\left(\mathrm{CuK}_{\alpha}\right), \mathrm{mm}^{-1}$	$42 \cdot 4$
$F(000)$	1.4

${ }^{a}$ Diffraction region measured: $h:-9$ to $9, k: 0$ to $26, l: 0$ to $9 ; 2 \theta$ diffraction angle region for lattice parameter refinement: 9.94° to $23 \cdot 12^{\circ}$; final differential map: $\Delta \varrho_{\max }: 1.35 .10^{3} \mathrm{e} \mathrm{nm}^{-3}$, $\Delta Q_{\text {min }}:-1 \cdot 86.10^{3} \mathrm{e} \mathrm{nm}^{-3},(\Delta / \sigma)_{\text {inax }}: 0 \cdot 30$.

Fig. 1
Orthogonal projection of the crystal structure of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ into the $x y$ plane

Table II

Fractional coordinates of atoms and their temperature factors $B_{\mathrm{eq}}=\left(8 / 3 \pi^{2}\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}$
for the nonhydrogen atoms. The standard deviations are given in parentheses

Atom	$(x / a) \cdot 10^{4}$	$(y / b) \cdot 10^{4}$	$(z / c) \cdot 10^{4}$	$\begin{gathered} B_{\mathrm{eq}} \cdot 10^{-4} \\ \mathrm{~nm}^{2} \end{gathered}$
$\mathrm{Cu}(1)$	1629(0)	-1221(0)	210(0)	164(7)
N (12)	910(16)	- 1547(6)	-1553(15)	231(46)
C(2)	304(19)	-1815(7)	-2488(18)	164(53)
S(32)	-475(5)	-2210(2)	-3819(4)	204(12)
S(32')	10475(5)	2790(2)	38198(4)	204(12)
N (13)	2320(15)	-857(6)	1998(14)	192(43)
$\mathrm{C}(1)$	2619(18)	-519(7)	2855(17)	153(51)
S(22)	3001(5)	-71(2)	3969(4)	181(12)
$\mathrm{Cu}(2)$	4450(2)	574(1)	2326(2)	145(7)
$\mathrm{N}(22)$	5119(17)	992(6)	3997(15)	219(50)
C(4)	5526(18)	1296(6)	4903(17)	143(47)
S(31)	6066(5)	1705(2)	6140(4)	175(13)
$\mathrm{N}(23)$	3745(15)	171(6)	637(15)	194(34)
C(3)	3751(16)	-173(7)	-98(17)	128(50)
S(12)	3765(5)	-663(2)	-1124(4)	203(13)
$\mathrm{Cu}(3)$	8044(3)	2215(1)	4813(2)	148(7)
N(32)	7280(15)	1867(6)	3070(15)	211(45)
C(5)	6738(17)	1602(7)	2097(18)	116(46)
S(21)	5979(5)	1202(2)	792(4)	199(12)
N(33)	8937(16)	2585(6)	6564(15)	189(44)
C(6)	9577(19)	2839(8)	7437(18)	189(48)
S(11)	-548(5)	-1808(2)	1236(4)	193(13)
S(11)	10548(5)	3192(2)	8764(4)	193(13)
$\mathrm{N}(14)$	3242(13)	-1712(5)	838(13)	131(39)
C(11)	3 943(19)	-1810(7)	$2258(16)$	219(54)
C(12)	5 036(19)	-2140(7)	2703(16)	225(57)
C(13)	5574(17)	-2401(6)	1735(16)	153(49)
C(14)	$4865(24)$	-2308(8)	220(22)	362(71)
C(15)	3806(19)	- 1973(7)	-53(17)	238(53)
C(16)	6837(20)	-2780(8)	2209(21)	328(61)
$\mathrm{N}(11)$	144(14)	-671(5)	-465(13)	140(41)
C(41)	-54(18)	-414(6)	-1716(16)	199(48)
$\mathrm{C}(42)$	-975(21)	-53(7)	-2169(17)	233(59)
C(43)	- 1953(21)	80(6)	-1457(17)	178(52)
C(44)	-1825(18)	- 170(6)	-136(18)	201(54)
C(45)	-769(19)	- 529(7)	338(17)	170(56)
C(46)	-3166(22)	445(7)	-2055(18)	358(64)
$\mathrm{N}(21)$	6 240(14)	119(5)	2998(13)	117(41)
C(21)	6 123(19)	-377(7)	2868(17)	229(58)

Table II
(Continued)

Atom	$(x / a) \cdot 10^{4}$	$(y / b) \cdot 10^{4}$	$(z / c) \cdot 10^{4}$	$\begin{gathered} B_{\mathrm{eq}} \cdot 10^{-4} \\ \mathrm{~nm}^{2} \end{gathered}$
C(22)	7278(19)	-706(7)	3361(17)	198(53)
C(23)	8661(18)	-492(7)	3 968(16)	166(56)
C(24)	8787(18)	16(7)	4029(16)	161(50)
C(25)	7561(19)	323(7)	3555(16)	236(57)
C(26)	9940(19)	-853(7)	4570(18)	248(56)
$\mathrm{N}(24)$	2661(14)	1030(5)	1653(13)	135(41)
C(51)	2777(19)	1529(7)	1587(18)	188(56)
C(52)	1630(18)	1854(7)	1092(18)	239(50)
C(53)	221(19)	1662(6)	649(16)	156(54)
C(54)	114(17)	132(7)	$762(16)$	169(49)
C(55)	1284(19)	839(6)	1220(16)	171(54)
C(56)	-1041(20)	2006(6)	180(17)	222(41)
$\mathrm{N}(34)$	9542(14)	1684(5)	5428(13)	122(41)
$\mathrm{C}(31)$	9875(17)	1485(6)	6794(16)	189(49)
$\mathrm{C}(32)$	10996(17)	1151(6)	7286(16)	154(46)
C(33)	11865(19)	996(6)	6450(16)	192(48)
C(34)	11497(20)	1214(7)	5075(17)	233(53)
$\mathrm{C}(35)$	10360(17)	1526(6)	4608(15)	133(44)
C(36)	13154(21)	671(8)	7028(19)	337(60)
N(31)	6610(13)	2783(5)	4157(12)	100(42)
C (61)	6994(19)	3267(6)	4350(16)	166(50)
C(62)	6035(19)	3676(7)	3995(16)	220(59)
C(63)	4563(19	3560(7)	3463(17)	206(54)
C(64)	4163(19)	3047(7)	3244(16)	219(52)
C(65)	5193(20)	2683(7)	3583(17)	226(55)
C(66)	3483(21)	3978(9)	3102(18)	352(66)

The $\mathrm{Cu}-\mathrm{N}$ bond lengths in the symmetrically independent coordination polyhedra are not significantly different; they fall within the regions of $0 \cdot 189-0 \cdot 196 \mathrm{~nm}$ for $\mathrm{Cu}-\mathrm{N}(\mathrm{NCS})$ and $0 \cdot 198-0 \cdot 205 \mathrm{~nm}$ for $\mathrm{Cu}-\mathrm{N}(\mathrm{L})$. The $\mathrm{Cu}-\mathrm{S}$ bond lengths, on the other hand, differ appreciably (Table III): while in the coordination polyhedron about $\mathrm{Cu}(2)$ the $\mathrm{Cu}-\mathrm{S}$ bond lengths are comparable to those in $\left[\mathrm{Cu}(\mathrm{py})_{2}\right.$. . $\left.(\mathrm{NCS})_{2}\right]$, they are significantly longer in the coordination polyhedron about $\mathrm{Cu}(1)$. In the coordination polyhedron about $\mathrm{Cu}(3)$, considerable asymmetry is observed in the bond lengths: one of the $\mathrm{Cu}-\mathrm{S}$ bond lengths lies within the range for the

Table III

Internuclear distances in $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ at 180 K

Atoms	Distance nm	Atoms	Distance nm	Atoms	Distance nm
$\mathrm{Cu}(1)-\mathrm{N}(11)$	0.202(1)	$\mathrm{Cu}(3)-\mathrm{N}(34)$	0•198(1)	C(41)-C(42)	0•129(2)
	$0 \cdot 202(1)^{a}$		$0 \cdot 196(1)^{a}$	C(42)-C(43)	0.137(3)
$\mathrm{Cu}(1)-\mathrm{N}(12)$	0.189(1)	$\mathrm{Cu}(3)-\mathrm{S}\left(32^{\prime}\right)$	0.317(1)	C(43)-C(44)	0-143(2)
	$0 \cdot 189(1)^{a}$		$0 \cdot 326(1)^{a}$	$\mathrm{C}(44)-\mathrm{C}(45)$	0.138(2)
$\mathrm{Cu}(1)-\mathrm{N}(13)$	0.195(1)	$\mathrm{Cu}(3)-\mathrm{S}(31)$	0.293(1)	C(43)-C(46)	0.150(3)
	0.196(1) ${ }^{\text {a }}$		$0 \cdot 298(1)^{a}$	$\mathrm{N}(21)-\mathrm{C}(21)$	$0 \cdot 123(2)$
$\mathrm{Cu}(1)-\mathrm{N}(14)$	0.199(1)	$\mathrm{N}(12)-\mathrm{C}(2)$	0.118(2)	$\mathrm{N}(21)-\mathrm{C}(25)$	0•134(2)
	$0 \cdot 196(1)^{a}$	$\mathrm{C}(2)-\mathrm{S}(32)$	0.168(2)	$\mathrm{C}(21)-\mathrm{C}(22)$	0.139(2)
$\mathrm{Cu}(1)-\mathrm{S}(12)$	0.311(1)	N(13)-C(1)	0.121(2)	$\mathrm{C}(22)-\mathrm{C}(23)$	0.142(2)
	$0 \cdot 311(1)^{a}$	$\mathrm{C}(1)-\mathrm{S}(22)$	0.159(2)	$\mathrm{C}(23)-\mathrm{C}(24)$	0.135(3)
$\mathrm{Cu}(1)-\mathrm{S}\left(11^{\prime}\right)$	0.301(1)	$\mathrm{N}(22)-\mathrm{C}(4)$	0.118(2)	$\mathrm{C}(24)-\mathrm{C}(25)$	$0 \cdot 140(2)$
	$0 \cdot 311(1)^{a}$	C(4)-S(31)	$0 \cdot 160(2)$	$\mathrm{C}(23)-\mathrm{C}(26)$	$0 \cdot 154(2)$
$\mathrm{Cu}(2)-\mathrm{N}(21)$	0.205(1)	$\mathrm{N}(23)-\mathrm{C}(3)$	0.117(2)	N(24)-C(51)	0.133(2)
	0.208(1) ${ }^{\text {a }}$	$\mathrm{C}(3)-\mathrm{S}(12)$	0.165(2)	$\mathrm{N}(24)-\mathrm{C}(55)$	0.137(2)
$\mathrm{Cu}(2)-\mathrm{N}(22)$	0.194(2)	N(32)-C(5)	0.118(2)	C(51)-C(52)	0.138(2)
	0•192(1) ${ }^{\text {a }}$	C(5)-S(21)	0.167(2)	$\mathrm{C}(52)-\mathrm{C}(53)$	$0 \cdot 140$ (2)
$\mathrm{Cu}(2)-\mathrm{N}(23)^{\text {b }}$	0.193(1)	$\mathrm{N}(33)-\mathrm{C}(6)$	0.113(2)	C(53)-C(54)	0-142(2)
	$0 \cdot 193(1)^{a}$	C(6)-S(11)	0.166(2)	$\mathrm{C}(54)-\mathrm{C}(55)$	0-134(2)
$\mathrm{Cu}(2)-\mathrm{N}(24){ }^{\text {c }}$	0.205(1)	$\mathrm{N}(14)-\mathrm{C}(11)$	0.139(2)	C(53)-C(56)	0•149(2)
	$0 \cdot 205(1)^{a}$	$\mathrm{N}(14)-\mathrm{C}(15)$	$0 \cdot 135(2)$	$\mathrm{N}(34)-\mathrm{C}(31)$	$0 \cdot 140(2)$
$\mathrm{Cu}(2)-\mathrm{S}(21)$	0.292(1)	$\mathrm{C}(11)-\mathrm{C}(12)$	0.134(2)	$\mathrm{N}(34)-\mathrm{C}(35)$	0.134(2)
	$0 \cdot 298(1)^{\text {a }}$	$\mathrm{C}(12)-\mathrm{C}(13)$	0.139(2)	$\mathrm{C}(31)-\mathrm{C}(32)$	0•137(2)
$\mathrm{Cu}(2)-\mathrm{S}(22)^{\text {d }}$	0.296(1)	C(13)-C(14)	$0 \cdot 148(2)$	C(32)-C(33)	0•139(2)
	$0 \cdot 298(1)^{a}$	C(14)-C(15)	0.132(2)	$\mathrm{C}(33)-\mathrm{C}(34)$	0.142(2)
$\mathrm{Cu}(3)-\mathrm{N}(31)$	0.202(1)	C(13)-C(16)	0.154(3)	C(34)-C(35)	0•134(2)
	$0 \cdot 204(1)^{a}$	$\mathrm{N}(11)-\mathrm{C}(41)$	$0 \cdot 138(2)$	$\mathrm{C}(33)-\mathrm{C}(36)$	$0 \cdot 148(3)$
$\mathrm{Cu}(3)-\mathrm{N}(32)$	0.190(1)	N(11)-C(45)	0•139(2)	$\mathrm{N}(31)-\mathrm{C}(61)$	0.133(2)
	$0 \cdot 193(1)^{a}$				
$\mathrm{Cu}(3)-\mathrm{N}(33)$	0•196(1)				
	$0 \cdot 193(1)^{a}$				

[^0]Table IV
Bond angles in $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ at 180 K

Atoms	Angle deg	Atoms	Angle deg
$\mathrm{N}(11)-\mathrm{Cu}(1)-\mathrm{N}(14)$	174.0(7)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{N}(21)$	121(2)
$\mathrm{N}(12)-\mathrm{Cu}(1)-\mathrm{N}(13)$	177.4(7)	$\mathrm{C}(25)-\mathrm{N}(21)-\mathrm{C}(21)$	119(2)
$\mathrm{S}(12)-\mathrm{Cu}(1)-\mathrm{N}(12)$	86.8(5)	$\mathrm{N}(34)-\mathrm{C}(31)-\mathrm{C}(32)$	122(2)
$\mathrm{N}(12)-\mathrm{C}(2)-\mathrm{S}(32)$	177(2)	C(31)-C(32)-C(33)	122(2)
$\mathrm{N}(13)-\mathrm{C}(1)-\mathrm{S}(22)$	179(2)	C(32)-C(33)-C(34)	114(2)
$\mathrm{N}(21)-\mathrm{Cu}(2)-\mathrm{N}(24)$	179.9(6)	C(33)-C(34)-C(35)	122(2)
$\mathrm{N}(22)-\mathrm{Cu}(2)-\mathrm{N}(23)$	178.5(8)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(34)$	123(1)
$\mathrm{S}(21)-\mathrm{Cu}(2)-\mathrm{S}(22)$	177.8(1)	$\mathrm{C}(35)-\mathrm{N}(34)-\mathrm{C}(31)$	117(1)
$\mathrm{N}(23)-\mathrm{C}(3)-\mathrm{S}(12)$	179(2)	N(11)-C(41)-C(42)	126(2)
$\mathrm{N}(22)-\mathrm{C}(4)-\mathrm{S}(31)$	179(2)	C(41)-C(42)-C(43)	121(2)
$\mathrm{N}(31)-\mathrm{Cu}(3)-\mathrm{N}(33)$	176.5(7)	C(42)-C(43)-C(44)	117(2)
$\mathrm{N}(32)-\mathrm{Cu}(3)-\mathrm{N}(34)$	176.3(8)	C(43)-C(44)-C(45)	120(2)
$\mathrm{S}(31)-\mathrm{Cu}(3)-\mathrm{S}\left(32^{\prime}\right)$	171.9(1)	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{N}(11)$	121(2)
$\mathrm{N}(32)-\mathrm{C}(5)-\mathrm{S}(21)$	177(2)	$\mathrm{C}(45)-\mathrm{N}(11)-\mathrm{C}(41)$	115(1)
$\mathrm{N}(33)-\mathrm{C}(6)-\mathrm{S}(11)$	178(2)	$\mathrm{N}(24)-\mathrm{C}(51)-\mathrm{C}(52)$	125(2)
$\mathrm{N}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	124(2)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	119(2)
C(11)-C(12)-C(13)	121(2)	C(52)-C(53)-C(54)	115(2)
C(12)-C(13)-C(14)	117(2)	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	122(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	115(2)	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{N}(24)$	123(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{N}(14)$	130(2)	$\mathrm{C}(55)-\mathrm{N}(24)-\mathrm{C}(51)$	116(2)
$\mathrm{C}(15)-\mathrm{N}(14)-\mathrm{C}(11)$	113(1)	$\mathrm{N}(31)-\mathrm{C}(61)-\mathrm{C}(62)$	125(2)
$\mathrm{N}(21)-\mathrm{C}(21)-\mathrm{C}(22)$	124(2)	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	117(2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	117(2)	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	118(2)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119(2)	C(63)-C(64)-C(65)	120(2)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120(2)	$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{N}(31)$	123(2)
		$\mathrm{C}(65)-\mathrm{N}(31)-\mathrm{C}(61)$	117(2)

polyhedron about $\mathrm{Cu}(2)$ whereas the other is appreciably longer. The orientation of the pyridine rings with respect to the equatorial plane is also different in the symmetrically independent polyhedra. The angles formed by the pyridine rings with the equatorial plane are 56° and 48° in the coordination polyhedron about $\mathrm{Cu}(2)$ and 127° and 154° in that about $\mathrm{Cu}(1)$. In the coordination polyhedron about $\mathrm{Cu}(3)$, both orientations of the pyridine rings occur, the angles are 49° and 134°.

The crystal structures of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ and $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$ involve thiocyanatocopper(II) chains with different steric orientation. Whereas in the pyridine complex the chains are linear and mutually parallel ${ }^{8}$ (Fig. 2), only linear fragments (composed of three coordination polyhedra) with a zigzag arrangement occur in the

4-methylpyridine complex (Fig. 3). Only in the coordination polyhedron about $\mathrm{Cu}(2)$, lying in the centre of the linear fragment, the bonds are comparable to the coordination bonds in $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$, whereas in the coordination polyhedra about $\mathrm{Cu}(1)$ and $\mathrm{Cu}(3)$ the longer $\mathrm{Cu}-\mathrm{S}$ bonds occur in sites where the orientation of the thiocyanatocopper(II) chain changes; these $\mathrm{Cu}-\mathrm{S}$ bonds also exhibit significant differences in their length at 180 and 293 K (Table III). The differences in the orientation of the pyridine rings in the various coordination polyhedra are probably due to the steric effects of the nonlinear thiocyanatocopper(II) chains.

The results demonstrate that, as expected, the different electronic properties of 4 -methylpyridine as compared to pyridine affect, via the central $\mathrm{Cu}(\mathrm{II})$ atom, the

Fig. 2
Orthogonal projection of the orientation of the thiocyanatocopper(II) chains in the crystal structure of $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$ into the $x z$ plane

Fig. 3
Orthogonal projection of the orientation of the thiocyanatocopper(II) chains in the crystal structure of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ into the $y z$ plane (elongated $\mathrm{Cu}-\mathrm{S}$ bonds are shown by broken lines)
strength of the axial $\mathrm{Cu}-\mathrm{S}$ bonds. Due to the elongation of the $\mathrm{Cu}-\mathrm{S}$ bonds, the thiocyanatocopper(II) chains in the crystal structure of $\left[\mathrm{Cu}(4-\mathrm{Mepy})_{2}(\mathrm{NCS})_{2}\right]$ are no longer linear. Such changes in the crystal structure may stimulate a decrease in the redox stability of the thiocyanatocopper(II) chains during the thermal decomposition.

REFERENCES

1. Kabešová M., Vargová I., Šramko T., Gažo J.: J. Therm. Anal. 13, 65 (1978).
2. Kabešová M., Šramko T., Gažo J., Zhumadilov E. K., Nefedov V. I.: J. Therm. Anal. 13, 55 (1978).
3. Macášková L., Kabešová M., Garaj J., Gažo J.: Monatsh. Chem. 104, 1473 (1973).
4. International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham 1974.
5. XTL/E - XTL Structure Determination System. Syntex Analytical Instrument, Cupertino 1976.
6. Sheldrick G. M.: Program SHELX'76. University of Cambridge, Cambridge (England) 1976.
7. Nardelli M.: Comput. Chem. 7, 95 (1983).
8. Soldánová J., Kabešová M., Gažo J.: Inorg. Chim. Acta 76, L 203 (1983).
9. Kožíšková Z., Soldánová J., Kabešová M., Gažo J.: Proc. 9th Conference on Coordination Chemistry, Bratislava-Smolenice 1983; p. 207.

Translated by P. Adámek.

[^0]: ${ }^{a}$ At 293 K, ref. ${ }^{9}$; in $\left[\mathrm{Cu}(\mathrm{py})_{2}(\mathrm{NCS})_{2}\right]$ at $293 \mathrm{~K}\left(\right.$ ref. $\left.^{8}{ }^{8}\right) ;{ }^{b} 0 \cdot 194(2) ;{ }^{c} 0 \cdot 198(2) ;{ }^{d} 0 \cdot 304(3) \mathrm{nm}$.

